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Abstract

This paper presents experimental and simulational
results of a cart with an active controlled caster to
reduce the cart crashes and vibrations. First the active
controlled caster is introduced, which has a mechanical
low-crash structure based on the idea of center of
percussion. Next the dynamical model of the cart with
the caster is derived to study the caster control for the
low crashes and vibrations. Then we show experimental
results of the cart with the caster controlled by the
acceleration and velocity signals, compared to the
simulation results. The proposed control is verified to
effectively reduce the impulsive crashes and vibrations
of the cart.
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1 Introduction

In recent years, it has been eagerly desirable that
patients, medicines and small precision parts should be
carried smoothly and quietly by advanced carts with
casters. In order to realize the ideal cart with low
crashes and vibrations, some casters equipped with
damping elements have been developed [1]. On the
other hand, although the casters with dampers can
restrict the cart vibrations, they had little ability to
reduce the crashed acceleration of the cart. Hence we
designed a new caster focusing on the center of
percussion of the caster, and verified experimentally the
effective reduction of the cart accelerations using a cart
with the new caster [2], [3]. However, the cart
vibrations were not removed effectively by the new
caster.

Thus we design an active controlled caster that has
a mechanical low-crashed structure based on the idea of
center of percussion. First the dynamical model of the
cart with a caster is derived to study the control method
for low crashes and vibrations. Next we show
experimental results of the cart with the caster
controlled by the acceleration and velocity signals,
compared to the simulation results. The application of
the control design is verified to effectively reduce the
impulsive crashes and vibrations of the cart. Finally we
in brief discuss the effect of the disturbance control
using the transfer functions and Bode gain diagrams of
the cart model.
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2 Active caster with low-crash mechanism
2.1 Low-crash mechanism of caster

Figure 1 shows a side view of a swing-arm typed
caster with an elastic and viscous element. The elastic
and viscous element has usually effects to reduce the
cart vibrations, and also has a role to keep the swing
arm horizontal. On the other hand, the cart has large
crushes through the swing arm when the caster wheel
with the swing arm collides with a small bump on a
road. It is rather difficult for the momentary crashes to
be removed by only the elastic and viscous element.
Thus we have proposed a mechanical design based on
the center of percussion of the swing arm with a wheel.
We summarize the design concept as follows.
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Fig. 1 Side view of swing-arm typed caster

The impulsive force from a road to the wheel
center P is nearly perpendicular to the line PQ shown in
Figure 1 when the caster wheel collides with a small
bump. Hence the transmitted impulsive force to the joint
center Q is expected to be effectively reduced when the
point Q is located on the center of percussion of the
whole swing arm against the point P. The design
condition is as follows:

mab=1;. (1)

Here Symbols @ and b denote the length between the
point P and the gravity center G of the swing arm, and
the length between the point G and the point Q,
respectively. Symbols m and /g denote the mass of the
swing arm and the moment of inertia about the gravity
center G, respectively. Appling the above concept based
on Equation (1) to the swing arm design, we have



verified experimentally the effective reduction of the
crashes against the cart [2], [3]. However, the residual
vibrations of the cart were not removed effectively even
by the new designed caster.

2.2 Design of active caster

Here, an active controlled caster is proposed,
which has the design concept based on center of
percussion introduced in the above section. The support
spring is also located to keep the swing arm horizontal
between the swing arm and the cart-platform in Figure
2, as shown in Figure 1. A voice coil motor (VCM) is
newly set up as a prismatic actuator on behalf of the
fixed pillar in Figure 1. It is likely to enlarge the
actuator’s size when only the VCM supports both the
inertial force and the cart weight, and thus two springs
are placed parallel to the VCM to compensate the cart
weight. Two linear bushes are also equipped to make the
movement of the VCM smooth. The side and front
views are shown in Figure 2.
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Fig. 2 Side and front views of active caster

3 Modeling of cart with active caster
3.1 Motion equation of cart with active caster

Here, we formulate the two-dimensional motion
equation of a cart with the active caster. The angle and
mass of the cart-platform are assumed to be negligibly
small, and to concentrate at one point on the platform,
respectively. The caster wheel has also an elastic and
viscous property that transmits an external force f. from
a road when the wheel contacts the road at Point T on
itself. Figure 3 shows the side view of the cart, which
has a bearing support, a spring for the swing arm and a
spring for the cart-load compensation. Points Q and A
denote the rotational center of the swing arm and the
attached point of the spring for the swing arm,
respectively.
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Fig. 3 Side view model of cart with active caster

Here we define Symbols in Figure 3 as follows:
y: Height from a road to the reference point of the cart,

yp: Height from a road to the wheel center P,

vo: Height from a road to the swing arm center Q,
ve: Height from a road to the mass center G of the

swing arm,

6: Swing arm angle from the horizontal road,

M: Equivalent mass of the cart at the reference point,
mg: Mass of the bearing support,

m: Mass of the swing arm with the wheel,
fu: Operational force of the VCM to the cart,
fx: Passive force of the load spring to the cart,
fu: Passive force of the swing arm’s spring to the cart,
fe: External force from the road to the caster wheel,
fo: Constraint force to the bearing support at Point Q.

In addition to the above modeling parameters, the
distance between Point G and Point A is defined as
Symbol e, and Symbols a and b are also defined as
shown in Figure 1. Figure 4 in particular shows the
distance parameters about the swing arm.
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Fig. 4 Distance parameters about swing arm

We derive the motion equation when the angle of
the cart-platform from the road is small enough.

Assuming that the external force f. itself becomes
the transmitted force at the wheel center P, we obtain the
vertical Newton’s Equations of the cart with the active
caster as follows:

My=f,+fc+fu—Mg @)
mQj}Q:_fu _fK+fQ_ng ’ 3)
mj}G:_fQ_fH+fe_mg : )

Considering that the swing arm rotates, we also
obtain the following Euler’s Equation:

IGé=—afe—efH—be : %)

Here Symbol /s denotes the moment of inertia about
Point G. The swing arm angle & is also neglected in
the right terms of Equation (5) under the approximate
conditions cos@ =1 andsinf =0.

On the other hand, the heights y, y¢ and the angle
6 have the following geometrical relationship:

Y6 =Y +bsin0
=y, +00- (6)

Substituting Equation (6) into Equation (5), and
eliminating the angle # and the constraint force fp, we
obtain the following formulations:

mj}G_'_mQyQ =—f.—Jx _fH"'f.z_(m"'mQ)g’U)
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IcY. I . a e
(m+b—gjyc —b—(z’yQ =[1+ije —(I—Z]fH —mg (8)
For the reduction of design variables, we define
new variables as follows:
I a e
L=m., —=u —=A.
ey
Here Symbol mg is considered to denote the equivalent
mass of the swing arm about Point Q. Substituting new
variables into Equation (8), we obtain the following new
expression:

(m+mG)j}G —mGj}Q =(1+,u)fe —(1—/1)f1[ —-mg.(9)

Equations (2), (7) and (9) are the final motion
equations of the cart with the active caster.

3.2 Modeling of elastic and viscous force

The passive forces fx and fy are formulated as
linearly elastic and viscous elements as follows:

fK=Ks{lso_<y_yQ)}_CS(y_)}Q)’ (10)
fH:KH{lHo_(y_yA)}_CH(y_yA)' an

Here Symbols K5, Cs and Isy denote the spring constant,
the viscous coefficient and the natural length of the load
spring, respectively. Similarly Symbols Ky, Cy and Iug
denote the spring constant, the viscous coefficient and
the natural length of the swing arm spring, respectively.

Since Symbol y4 means the height of Point A from
the road, the following relationship is obtained
geometrically:

e e
Vs ;(1—ij6 5% =(1=-2)ys+4y,.  (12)

Next we describe the external force to the caster
wheel from the road. The external force f. is also
formulated as an elastic and viscous element similar to
above passive spring/dampers when the caster wheel
runs on a flat road as shown in Figure 5. The
formulation is as follows:

Je=Ky(R=yp)—Cryp- (13)

Here Symbols Kr, Cr and R denote the spring constant,
the viscous coefficient and the natural radius of the
wheel tire, respectively. On the other hand, the
vertically external force f; is formulated as follows when
the caster wheel collides with a hard and small bump:

j;:(KfAZ+C}AZ)——__;&L____. (14)

\j(a—xp)2+ypz

Here Symbols AZ and AZ denote the lapping
displacement between the wheel circle and the
semicircular bump, and the velocity of that
displacement, respectively. In this case, Symbols
AZ and AZ are expressed as follows as shown in
Figure 6:

AZ =(R+r)=J(a=x) +,’

1

e {(a=x,) b —ypi, ) . (1)

Here Symbols a and r denote the center position and the
radius of a semicircular bump, respectively.

AZ:

S
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Fig. 5 Motion appearance of caster wheel

Fig. 6 Contact with a semicircular bump

The selection of Equation (13) or Equation (14) is
determined by the arithmetic sign of AZ . Additionally
the velocity of the wheel center is substituted for that of
the cart, and the position of the wheel center x, is
obtained by time integral of the velocity.

3.3 Modeling of VCM and control design

The VCM is simply formulated as a linear actuator
with well-known DC motor properties:

di )
%zLi+m+%,%=Kj,ﬂ:Kﬁ (16)
” |

Here Symbols v;, ve and i denote the input voltage, the
induction voltage and the electrical current, respectively.
Symbols L, R, K. and K, denote the inductance, the
resistance, the inductive constant and the force constant,
respectively. In addition to the above motor’s properties,
the amplifier’s property driving the VCM is assumed as
a transfer function with one-order lag system as follows:

Am 17
1+7Ts = a7
Here Symbols 4,, and T denote the direct current gain
and the time constant of the amplifier, respectively.

Combining motion Equations (2), (7) and (9) with
Equations (10) — (17), we obtain the whole cart model
including an active caster equipped with a VCM.

Next we describe the control design for low
crashes and vibrations of the cart. What is called,
sky-hook damper has been well known to reduce the
vibrations of cars in the automobile engineering.
However, the caster wheel is different from the
conventional car wheel because the center of the caster
wheel has a lever offset from the vertically rotational
axis of the caster. Hence two accelerometers are placed

GA(S) =
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on both the cart-platform and the rotational center Q of
the swing arm as shown in Figure 2. Two accelerations
of j and y, are acquired by using these two
accelerometers. Since the acceleration signals generally
have many noises at high frequencies, appropriate low
pass filters are added to remove these noises. After
applying the low pass filters to the acceleration signals,
the velocities are also acquired by time integral of the
signals. The whole feedback signals are obtained by the
combination of accelerations and velocities. Figure 7
shows the controller of the cart with an active caster.

Cart y
platform Accelerometer '—‘l—b
s ] v
— — Yo
Joint Q o |'a eelerometer >
swingarm |
fi__ 4
Controller

Fig. 7 Controller for low crash and vibration

4 Experiment of cart with active caster
4.1 Hardware system

First, the hardware components are shown. Figure
8 and Table 1 show the VCM (voice coil motor) for
control and the electrical specifications, respectively.

a) Stator b) Moving coil
Fig. 8 Components of VCM

Table 1 Electrical specifications of VCM

symbol value
Resistance [Q] R 52
Inductance [H] L 6.42x107°
Force constant [N/A] Kf 15.5
Back-emf constant [V/(nvs)] Ke 15.5
Direct current gain [V/V] Am 4.6
Time constant [msec] T 20

Table 2 Mechanical specifications of swing arm

symbol value

Distance of point P and point G [m] a 0.029

Distance of point G and point Q [m] b 0.098

Mass of swing arm [kg] m 0.816
Moment of inertia about point G [kgm2] Ig 2.62x10°
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The swing arm is designed as a specific arm based
on the idea of center of percussion as mentioned in
Chapter 2. Table 2 shows the mechanical specifications
of the swing arm. Table 3 shows each mass of the cart
with the swing arm. Table 4 shows the specific
parameters of spring components. Table 5 shows the
parameters of the wheel tire that were measured by
experiments.

Table 3 Masses of main parts

symbol value
Mass of support [kg] mo 1.39
Virtual mass of swing arm [kg] meg 0.27
Virtual mass of cart [kg] M 1.23
Table 4 Specific parameters of spring components
symbol value
Natural length of spring for load
atural length of spring for loa Is 9.85% 102
compensation [m]
Spring constant for load 3
compensation[N/m] Ks 40010
Viscous coefficient [N/(m/s)] Cy 4
Natural length of spring for swin,
et iength o AP for swing L 117X10"
arm [m]
Spring constant for swing arm[N/m] Ky 3.91x10*
Viscous coefficient [N/(m/s)] Cy 8
Table 5 Parameters of wheel tire
symbol value
Radius [m] r 0.05
Spring constant [N/m] K, 1.20%x10°
Viscous coefficient [N/(m/s)] C, 200

Figure 9 shows the experimental setup for the cart
with the active caster. The cart is pushed out at
1100[mm/sec] by a linear servo system, and runs on an
aluminum plate. A semicircular bump is placed on the
plate, which has a radius of 2.5[mm]. All of motion data
are acquired by a personal computer. The feedback
control is conducted using Labview™ real-time system.

Cart with caster Cushion

Point A

Linear actuator

Controller for

running plate (Aluminum) linear actuator >
Personal computer E
for operation —
L]

Fig. 9 Experimental setup for cart with active caster

4.2 Experimental result

In this section, we confirm the effects of the active
control by experimental results, compared to simulation
results. All of the experiments and simulational are
conducted under the condition as shown in Figure 9.

Figure 10 shows the acceleration response of Point
A on the cart platform in Figure 9 when the caster runs
and collides with a small bump without control. The
experiment has a good agreement with the simulation



from the viewpoint of resonant frequency, and the
convergent time to zero is a little different between the
experiment and the simulation.
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Fig. 10 Acceleration response without control

Next we show some results with feedback control.
These experiments and simulations have the low pass
filters of 130 [Hz] to remove sensory noises and the
cycle time of 1 [msec] to realize real-time control.

Figure 11 shows the controlled result with the
feedback signal of only relative velocity. This feedback
effect is considered to correspond to the mechanical

damping effect between the cart and the bearing support.

The residual vibrations are largely repressed, and the
first impulsive acceleration is not reduced, compared to
that in Figure 10.
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Fig. 11 Acceleration response with control

Figure 12 shows the control result with the
feedback signals of relative velocity and cart
acceleration. The first impulsive acceleration is rather
reduced by virtue of the feedback signal of cart
acceleration. The acceleration feedback is considered to
change the equivalent mass of the cart virtually. Figure
12 reveals that the vibrational components with high
frequencies increase compared to Figure 11.
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Fig. 12 Acceleration response with control

Figure 13 shows the control result with the
additional feedback signal of the velocity of bearing
support in order to remove the above vibrations with
high frequencies. The simulation results in Figure 13
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have better agreements with experimental results than
those in Figure 10, because the uncertain elements such
as frictions and backlashes are considered to be largely
restricted by feedback control.

25

20 + = Experiment
RN —— Simulation
o
200 r
E .
= 7T
= Yo
E 5t
5
E-l() r
<-15 - Point A in Figure 9 K,=40.K,,=5. K, =0.2
20 b
< " N 1 "

1o
o U
3

0.05 0.10 0.15 0.20 025 0.30
Time [sec]

Fig. 13 Acceleration response with control

Comparing Figure 10 to Figure 13, we confirm
that the maximum value of the cart acceleration
becomes about 1/4 and the damping time of the residual
vibration becomes about 1/5 by virtue of feedback
control.

4.3 Discussion of control performance

In this section, we discuss the control performance
by using the transfer function and Bode diagram of the
objective model. First, adding Equation (2) to Equation
(7), we obtain the following relationship:

mjg +my¥, + My = f,—(m+my+M)g-  (18)

Applying Equations (7), (9) and (18), the transfer
function of the objective model is derived. The
following modified variables are newly defined to set
the equilibrium points at initial points with zero values:

Fe Efe_.feO’FH EfH _fHO,FuEfu _qu,
Fy=fx —fKo’YEy_yo,YQ EyQ—yQO,YG =Y6 ~Vao

Applying Laplace transformation to Equations (7),
(9) and (18), we obtain the following matrix form:

(m+mgy)s® —mgs* 0 |[Y,
ms’ sz2 0 Y,
ms* szz Ms*|| Y

(1+ ) F,+(1-2) G, {Y (1= A) ¥, - A%, }
=|=F,+F,+G,(Y-Y,)+G, {y -(1-1)¥, - A%,}
F

e

»(19)

where sC, +K, =G, (s), sC,+K, =G, (s).

The output s?Y(s) is represented by both the
operational input F,(s) and the external force Fe(s)
from Equation (19), as follows:

_ (02 (s)s2 +a, (s))Fe (s)+s2 (C2s2 +C, (s))Fu (S).(20)
bys" +b,(s)s” +b,(s)

s°Y (v)
Here, new symbols are defined as follows.

a, (S)E{mG —,uxlm+(1+,u)(1—/1)mQ}GH (s)
+(mG —zym)GS (s),
w(5)=(1-2) G, (5)G, (5,

b,(s)=b, EM(mmG +mgm, +QO),



b,(s)= M{(m +mG)GS(s)+(/12m +mg+(1 —ﬂ)z mQ)GH (s)}
+(mm,3 +mgm, erQm)(Glv (s)+ G, (s)),

b, (s) = (1 —1)2 (M +my, +m)GS (S)GH (s),

C,(s)=C, =mm, +mgmy, +mym,

Gy (s)=(1=2){(1=2)my— Am} G, (s).

Here we represent the Bode gain diagram from the
disturbance input f to the acceleration outputy ,
based on Equation (20). It is noticed that the
operational input F,(s) includes the properties of the
actuator and LPF as shown in Figure 7.

The green curves and blue curves in Figure 14
show the result with the feedback signal of only
relative velocity and that without control, respectively.
The assumed condition of the Bode gain diagram
with control corresponds to that of the acceleration
response shown in Figure 11. We can see that the two
resonant frequencies of 4[Hz] and 35[Hz] transfer to
those of 13[Hz] and 100[Hz] by virtue of feedback
control. Although the amplitude of the past resonant
frequency of 35[Hs] is largely reduced, that about the
new frequency of 100[Hz] rather increases. The
tendency of amplitudes that appeared in Figure 14 is
also confirmed to be similar to that in Figure 11.

with control

without control [T

Amplitude of w? Y(jw)! Fi(jw)
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Fig. 14 Bode gain diagram-1

Figure 15 shows the case with the additional
feedback signals of the cart acceleration and the velocity
of bearing. The blue curve in Figure 15 is same as
that in Figure 14. The assumed condition of the Bode
gain diagram with control corresponds to that of the
acceleration response shown in Figure 13. We can
confirm that the amplitude of the resonant frequency
of 100[Hz] becomes smaller and flatter than that
shown in Figure 14, and consequently the residual
vibration of the cart rapidly converges to zero as
shown in Figure 13.
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Fig. 15 Bode gain diagram-2
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5 Conclusion
This paper reported an active controlled caster to
reduce the cart crashes and vibrations. The main results
are as follows:

1) The active controlled caster was proposed,
which was designed under the concept of
center of percussion.

2) The dynamical model of the cart with an
active caster was derived including the
actuator dynamics to study impulsive
accelerations and control design.

3) The experimental results had good
agreements with the simulation results
calculated using the dynamical model.

4)  The cart acceleration became about 1/4 and
the damping time of the residual vibration
became about 1/5 by virtue of feedback
control.

5) The control performances were discussed
using the Bode gain diagram of the
dynamical model.

In this study, the distribution and combination of
feedback gains were determined by trials and errors,
according to the observation of the actual responses.
The systematic determination of gains is left in future
works. It is also important for the dynamical model of
the cart to be improved to be applicable to not only the
vertical motion but also the horizontal motion.
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